751 research outputs found

    Characterization of multiple twinned structural units in pulse-electrodeposited nickel

    Get PDF
    The investigation was performed on pulse-electrodeposited Nickel with sub-microcrystalline microstructure containing slightly elongated grains having a <110> fibre texture in growth direction. Structural units in form of groups of elongated grains possessing a common <110>-zone axis in growth direction and CSL boundaries (in some cases twins) between them have been found in the microstructure by use of EBSD. Grain growth sets in above 325°C but the texture is conserved up to at least 600°C. This means that the arrangement of twins and other CSL boundaries stabilized the structural units; there is no orientation change (by further twinning) when grain growth occurs as seen in previous studies on Ni and Ni-Fe of different initial texture. The observed structural units were characterized in detail and the occurring grains and grain boundaries are described

    Ultra high Performance Concrete - Materials Formulations and Serviceability based Design

    Full text link
    [EN] ABSTRACT Materials and mechanical design procedures for ultra-high performance cement composites (UHPC) members based on analytical models are addressed. A procedure for the design of blended components of UHPC is proposed using quaternary cementitious materials. The blending procedures are used using a packing and rheology optimization approach to blend high performance mixtures using non-proprietary formulations. Closed-form solutions of moment-curvature responses of UHPC are derived based on elastic-plastic compressive model and trilinear strain hardening tension stress strain responses. Tension stiffening behavior of UHPC due to fiber toughening and distributed cracking is then incorporated in the cross-sectional analysis. Load-deflection responses for beam members are obtained using moment-area, and direct integration approach. The proposed models provide insights in the design of SHCC to utilize the hardening properties after cracking. Using proper parameters, generalized materials model developed are applicable to both SHCC and strain softening cement composites such as steel fiber reinforced concrete (SFRC), textile reinforced concrete (TRC) and ultra-high performance concrete (UHPC)Yao, Y.; Arora, A.; Neithalath, N.; Mobasher, B. (2018). Ultra high Performance Concrete - Materials Formulations and Serviceability based Design. En HAC 2018. V Congreso Iberoamericano de hormigón autocompactable y hormigones especiales. Editorial Universitat Politècnica de València. 1-13. https://doi.org/10.4995/HAC2018.2018.8263OCS11

    Cross-view Graph Contrastive Representation Learning on Partially Aligned Multi-view Data

    Full text link
    Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields. However, most previous works assumed that each view is complete and aligned. This leads to an inevitable deterioration in their performance when encountering practical problems such as missing or unaligned views. To address the challenge of representation learning on partially aligned multi-view data, we propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations. Compared with current approaches, the proposed method has the following merits: (1) our model is an end-to-end framework that simultaneously performs view-specific representation learning via view-specific autoencoders and cluster-level data aligning by combining multi-view information with the cross-view graph contrastive learning; (2) it is easy to apply our model to explore information from three or more modalities/sources as the cross-view graph contrastive learning is devised. Extensive experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks

    First Principles-Based Design of Economical Ultra-High Performance Concrete

    Get PDF
    This paper presents a novel strategy to design the binder phase of ultra-high performance concrete (UHPC) from commonly available cement replacement (fly ash, slag, microsilica, metakaolin) and fine filler (limestone) materials. A packing algorithm is used to extract the number density, mean centroidal distance, and coordination number of the microstructure. Similarly, rheological studies on the pastes provide yield stress, plastic viscosity, and mini-slump spread. The selection criteria involves using the three microstructural and three rheological parameters individually or in combination to define packing and flow coefficients. The selection criteria is flexible enough to allow users modify the constraints depending on the application. The binder with the desired packing and rheological features is combined with aggregate sizes and amounts chosen from a compressible packing model based on maximum packing density. A fiber volume fraction of 1% is also used, along with accommodations for wall and loosening effects. The model is programmed in a userfriendly environment to enable engineers select aggregates from locally available materials. Compressive strengths greater than 150 MPa are obtained for the selected UHPC mixtures after 28 days of moist curing. The strength-normalized cost of such mixtures is only a fraction of that of proprietary UHPCs

    Magnetic ground state of the Kitaev Na2_2Co2_2TeO6_6 spin liquid candidate

    Full text link
    As a candidate Kitaev material, Na2_2Co2_2TeO6_6 exhibits intriguing magnetism on a honeycomb lattice that is believed to be C3C_3-symmetric. Here we report a neutron diffraction study of high quality single crystals under aa-axis magnetic fields. Our data support the less common notion of a magnetic ground state that corresponds to a triple-q\mathbf{q} magnetic structure with C3C_3 symmetry, rather than the multi-domain zigzag structure typically assumed in prototype Kitaev spin liquid candidates. In particular, we find that the field is unable to repopulate the supposed zigzag domains, where the only alternative explanation is that the domains are strongly pinned by hitherto unidentified structural reasons. If the triple-q\mathbf{q} structure is correct then this requires reevaluation of many candidate Kitaev materials. We also find that fields beyond about 10 Tesla suppress the long range antiferromagnetic order, allowing new magnetic behavior to emerge different from that expected for a spin liquid.Comment: 4 pages, 4 figures, plus Supplemental Materia

    Learning to Fail? Evidence from Frequent IPO Investors

    Get PDF
    We examine the effects of bidding experience on two groups of investors – individuals and institutions – in terms of their decisions to bid again and their bidding returns. Bidding histories are tracked for all 31,376 individual investors and 1,232 institutional investors across all 84 IPO auctions during 1995-2000 in Taiwan. For individual bidders: (1) high initial returns in IPO auctions increases the likelihood of participating in future auctions; (2) bidder returns steadily decrease as they participate in more auctions; (3) auction selection ability does not improve (and may get worse) with experience; and (4) greater experience is associated with more aggressive bid prices. These findings are consistent with naïve reinforcement learning wherein individuals become unduly optimistic after receiving good returns. In sharp contrast, there is little sign that institutional investors exhibit such behavior

    Characteristics of a modified H13 hot-work tool steel fabricated by means of laser beam powder bed fusion

    Get PDF
    In the present study, a modified H13 hot-work tool steel (M-H13) was fabricated by laser beam powder bed fusion (LB-PBF). The effect of two types of post processing, direct tempering from as-built condition (DT) and conventional quenching followed by tempering (QT), on the microstructure and mechanical properties was evaluated. The typical microstructure in QT condition was tempered martensite with carbides along lath boundaries. In DT condition, melt pool boundaries and cellular structure from as-built condition were still observed. While comparable tensile properties and hardness were obtained, DT samples exhibited significantly lower impact toughness compared to QT samples. This was attributed to the difference in work hardening ability and strain rate sensitivity originating from different microstructures obtained under these two heat treatment conditions. The study was also focused on the softening behavior and the correlation with the microstructure of the two post treatments at the elevated temperatures. It was found that the DT samples showed lower thermal softening compared to QT samples. The evolution of carbides was discussed based on the microanalysis results and the JMatPro simulation
    corecore